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ABSTRACT

We construct and study the twisted reduced SU(N) X
SU(N) chiral model in two dimensions. The eguivalence of
the reudced model to the field theory is established by
examining the Dyson-Schwinger equations and weak coupling
perturbation expansion.We evaluate the internal energy and
two-point correlation function by extensive Monte-Carlo
simulations for N=12,24 and 36.We find a non-analyticity
near the weak coupling edge of the crossover region in which
the system flips back and forth between the '"normal" state

and one characterised by a strongly disordered correlation

function.



-3- FERMILAB-Pub-83/97-THY
INTRODUCTION

It has been shown recently that at N=x field theories
with SU(N) or O(N) internal symmetry become eqguivalent to
matrix models living at a single site [1-3].These reduced
models have made numerical simulations of large N theories
practicable.There are two distinct types of reduced models
which reproduce the corresponding field theory. The first
class,known as Quenched Eguchi-Kawai (QER) models rewvresents
translations in the diagonal part of the internal symmetry
group [2].However, particularly for gauge theories,this
turns out to be rather cumbersome,and a much simpler version
has been proposed -the Twisted Eguchi-Kawai (TERK) models.
In TEK models,translations are represented by internal
symmtery matrices which form a 't Hooft algebra.

The TEK models are particularly well-suited for
numerical computations. Apart from their simplicity, they
have a weaker dependence of N on the volume of the system.

For QFEK models to work, one must have N 2 Ld

(where L is the
size of the box in which the parent field theory is
defined) ,while for TEK models one has N=Ld/2. This means
that finite size effects are less severe in TEK models; 1in
fact,the finite size corrections are of the same order as
the leading large N corrections.

In this paper we shall construct and study the twisted

reduced SU(N) X SU(N) chiral model in two dimensions. The

two dimensional chiral model is believed to he in the same
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universality class as the four dimensional gauge theory [4].
In fact, studies of the N=3 model vindicate this helief [5].

We have performed extensive Monte-Carlo simulations of
the TEK chiral model for several values of WN.The internal
energy and the two-point correlation function were measured.
While the dependence of the internal energy on the coupling
is in good agreement with the results of the strong and weak
coupling expansions at the respective ends, we find evidence
for a strong non-analvticity in intermediate coupling.This
occurs near the weak coupling edge of the c¢ross-over region.
The system switches bhack and forth between two states : one
characterised by a weakly disordered correlation function,
the other exhibiting strong disorder. Such strong disorder
(with correlation functions actually turning negative for
large separations) is totally out of tune with the general
trend as one goes from strong to weak coupling. The physics
of this peculiar behaviour is not clear at the moment.

The QEK version of the chiral model has been studied
earlier in the literature [6]. 1In this case a first order
phase transition in the cross-over region has heen reported.
Our results do not contain any evidence for such a
transition,although the convergence is definitely slow in
this region. Our simulations have also accumulated 10-100
times the data of previous studies and,since we study TEK
models, the finite size effects are considerably smaller
{(~1/5) than previous studies.

In Section II we define the model. Section III
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contains a brief discussion of the equivalence of this model
with the parent field theory via Dyson-Schwinger egquations
and weak coupling perturbation theory. 1In Section IV we

summarise the results of our numerical investigation.
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IT.THE MODEL.

The field theory we shall consider 1is defined on a

square lattice by the action:

S = "ﬁZW[UCK)U+CX+/,L)+h.c.j )
)q%;
The twisted model is obtained by applying the reduction

prescription:

U(x) —> DxOU DX

D(x) = /j_:T (/-);)Xf-'- 2)

where Pu's are traceless SU(N) matrices satisfving the

algebhra:
- _ 2n o (3
//u [, = ex,o( N Y)V/-L) /vlf-l 3)
The reduced action becomes:

Se = - f8 > T (U UM +he) - @)
/J

The field theory 1is invariant under the svmmetry SU(N) X

SU(N)/ZN H
U = P U

where P and Q are independent SU(N) matrices. The reduced

model (4} is ,however,invariant under the symmetries:
v > z2U

U — Sta)usta) ¢5)
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where z is an element of ZN and S{q) is given hy:

q
S(_CD = 7};‘(@) H , 7ﬂ=,'n!'egev~

Expectation values of invariant guantities are obtained
by applving the reduction prescription (2) and averaging
over the ensemble defined by the reduced acticon SR with a
fixed wvalue of the twist nuv. Thus for a typical Green's
function of the parent theorvy which respects the full

symmtery:
Gixe) = Tv UG Utea) ... Um) UG - @)

the corresponding object in the reduced model is:

6R(X1) = Iv¢ <D(>(;)UD+CX]) D(Xz) UfB+CX2),..>R C (7>

where < >Rdenotes average in the reduced model. The twists

nuv are to be chosen so that the equivalence

G (x:) = GolX:)

holds.



-8- FERMILAB-Pub-83/97-THY
III. EQUIVALENCE TO THE FIELD THEORY

The equivalence of the reduced model to the field
theory may be established by considering Dyson-Schwinger
equations obeyed by the Green's functions. These equations
may be derived in the standard manner (see e.g.Ref[71).

Consider the following quantity in the parent field theory:

15 < Aa U O . >
-(8)

= L(du exp[-pST Tr [ XLV ]

where A, are the generators of SU(N) normalised in the

standard fashion. Now make a change of variables:

Ulxi) = (l-f- 1€ Ao YUY - (8)

Under this change of variables, the measure is invariant and

one has the following egquation:

é“ E E e { [uxp U - L0V +p) ~ UL, +/u)u+(w,')]}>

ZSCXMXL) {,‘\ILQ_ <7? [U(x;)U’LO(z)... U+C¥t-:)] x
* e [UCxg) - - UMD

<T\;L Tr [U(“(:)U"'(x,_)... U*an)]>+

- f\JT" <T’." [uTex) - U} ] %
Te [UCxgy,) - u*(n)])}

- (0
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At N=co expectation values of products of invariant
quantities factorise 1leading to a closed equation for

gquantities of the type G(xi):

ﬁ—-; b Te § [P - JLVCDUT s - LExHoUTCIED

= (7w [ueoutta) - UTGen)] > +
2 8§ (%, xa) {(‘7\,’— T [u(xUTCa)- - Uxe ISR T [utx)- vl
L

~ T LU U 3 IO R Te Loy Ve

SN
For the reduced model one starts with the translate of (8):

Ty < :DCXJ)’AQUD-}CK!)-:D(XL)U.Df(x-,_). ) >

= = 28 SsT Te [ DO MaUDHXD- ]
zjdu exp[~BSe] Te [ DO 7 s

and makes a change of variables:
U > (1+1€2AadU o U3)

An identical procedure now leads to an eguation which is
just the translate of equation{(10) apart from additional

source terms of the generic form: (-Foy- X, :;:xm)

SHTF Dlm) U DGO DLy -+ Dm0 > X

T+ DEOUDHXm) - .. D) >
Q)
= T DUm)DICxy Dl - - DXt > X

< Te DX D xm) Dlms) U Dlxma) - D+(Xn)>}
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where factorisation property has been used. There are
similar terms for X=X 3 however, the equations for G(x) also
contain these terms. The reduced model is thus equivalent
to the field theory only 1f these terms vanish for all R.

In extreme weak coupling (B=«), U is frozen to the unit

matrix (or a Zy-multiple of it) and the extra source terms

involve traces like:
Tv DOm-X)

The condition that such traces be non-zero is easily seen to

be:

m/uv (XM'- xf)v = f/?»t-N o ("g)

where pu's are integers. By an explicit calculation,it may
be checked that (15) is also the condition for the source
terms to be non-zerp at strong coupling.

In two dimensions n is necessarily of the form

uv
n =neu . Then (1l5) becomes:

(Xm'”Xl)/u. = 0_{_ éfuv PVN . ”06)

Suppose, for a given integer L, n=L™ and N=Lm+l. Then (16)

shows that if the parent field theorv is defined in a
periodic box of size L,all pairs of points (x,,%x,) for which
the Dyvson- Schwinger equations may differ for the two
theories are actually the same point by periodicity.

To find the correct choice of m, we investigate the

weak coupling expansion of the reduced model.One expands
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around the vacuum:

U = €XP(”—.Q/\]‘1§) at= a (7D

The momenta are generated entirely from the internal degrees

of freedom. this is seen by expanding a as follows:

a = qZ a(ad A(9)

K
where A(g) = 1’[({;) ~ ... (8)

and n/blv kv = C?/o(_

where the k are integers. Since Pu's are

! and 's
P S 9 e

translation matrices in a periodic box of size L, (FU)L=1

q independent A{g)'s in d dimensions. For

2

and there are L

these to form a compltete basis for the N degrees of

freedom contained in a ,one must have 1\1=Ld/2

which gives N=L
in two dimensions. A detailed analysis of the perturbation
expansion (along the lines of Ref.[8)]) shows that this is
the only choice which lead to identical perturhation series
for the reduced model and the field theory. We thus
conclude that at least in the weak coupling and strong
coupling regions the reduced model with N=L is equivalent to
the chiral field theory defined in a periodic box of size L.
We shall assume that the equivalence wersists for all

coupling. The Fp's may be chosen to be the standard N X N

't Hooft twist matrices:
U?){j = 8[-}-:,_;' Cmod N) -~ (19)
(2 )y = Sg exp [ 2 (i1 -8)]
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We record below the lowest order contributions to the

internal enerqgy E:

- + 4 . 0
E = N;Re{F(UIpUIﬂ)} (20)
in the strong and weak coupling expansions:

<ev = 28 + o(Fa2) £ < o
<ES = 2—-4% + 0 %z) £—>>(
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IV.NUMERICAL RESULTS

We have performed Monte-Carlo simulations of the model
described above for N=12,24 and 36. The matrix U was
updated by left multiplication with a random SU(N) matrix
which has non-trivial entries only in a SU(2) subgroup. One
sweep corresponds to going through all the SU(2) subgroups.
The updating matrix was adjusted to obtain an acceptance
rate of approximately 50% in the standard Me tropolis
algorithm. We measured the internal energy defined in

equation (13) and the two pvoint correlation function:

G(x) = ;’;—- Re <+ [URY Ut 1> - (22)

The internal energy was monitored in block averades over
every ten sweeps, while correlation functions were measured
in block averages over every 100 sweeps. Typically several
thousand sweeps were made; in the cross-over region we often
went through as many as 25,000 sweeps.

Figures (1) and (2) show the internal energies as
functions of the c¢oupling for N=24 and N=36 respectively.
The lines represent the lowest order strong and weak
cpupling results. The agreement with our data is rather
gocd. There is a sharp crossover in the vicinity of R/N =
0.3. To probe the physics in the cross-over region we made
long runs with both ordered and disordered starts. Contrary

to previous reports about the QEK chiral model, we do not
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find any evidence for a first order phase transition. The
convergence to eguilibrium is rather slow in this region,
hut the histories of internal eneray for both hot and cold
starts converge to the same value, Figure (3) shows a
typical history at very weak coupling (data points are block
averages over 500 sweeps) Figures (4) and (5) show the
corresponding behaviour in the cross-over regime.

As we proceed towards the weak coupling edge of the
cross—-over, we observe evidence for some non-analyticity.
This shows up markedly in the behaviour of the correlation
function and weakly in the internal energy.In Figure (6) we
show the behaviour of the correlation function for various
values of the coupling excluding the region of
non-analvticity mentioned above. The correlation length
increases smoothly with RB. In a region between B/N=0.48 and
B/N=0.55 the correlation function exhibits two distinct
types of behaviour as we follow the history over many
sweeps. We have studied this region quite extensively with
very long runs. Typically, the system would appear to
settle down after a few hundred sweeps with the correlation
function behaving in a fashion essentially similar to that
at lower R. However, after some time (usually after 4000 or
5000 sweeps) the system sudedenly flips over to a strongly
disordered state in which the correlation function turns
negative for large distances. This latter state usually has
a slightly lower energy. In certain cases the system again

flips back to the "normal" state. 1In Figures {7) and (8) we
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show plots of G(xX) versus X in the two different states for
BR/N=0.5 for ©N=24 and N=36. Figures (9) and (10) show the
histories of the internal energy indicating the times at
which the £lips occured. As we go further into the weak
coupling region this strange behaviour disappears, and the
correlation function has a normal behaviour albeit with a
larger correlation length. We have checked this hy
performing runs with as many as 48,000 sweeps in very weak
coupling.

We emphasize that the non-analyticity discussed above
is not very apparent in the behaviocur o©of the internal
energy; in fact, one would very likely miss it completely
unless one monitors the correlation function. Neither is it
a finite-size effect : the region of non-analyticity is the
same for N=12,24 and 36, and disappears completely in weak
coupling. As vet we do not have any explanation of this
rather strange phenomenon.

One of our original motivations behind this
investigation was to check asymptotic freedom for the model
and extract values of the mass gap. The correlation
function does show some exponential fall-off; however,in the
weak coupling region the correlation length was too large to
allow for a sensible discussion of scaling. Probably a
better idea of the continum physics may be obtained hy using
an improved action.

After this work was completed we received a preprint by

Aneva et.al.[9] in which it has heen shown that the symmetry
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in egn. (5) above may be used to argue that the extra source

terms (i§ vanish for all couplings.
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FIGURE CAPTIONS

Internal energies for N=12. Typical errors are
0.01

Internal energies for N=24. Typical errors are
0.02.The «crosses represent energy averages in the
"abnormal" state.

History of internal energy at very weak
coupling.Points are block averages over every 500
sweeps.

Histories of internal energy for hot and cold
starts in the Ccross—-over region for
N=36,ﬁ/N=0.20.Points are block averages over every
50 sweeps.

Histories of internal energy for hot and cold
starts in the cross—-over region for N=36,P/N=0.3
points are block averages over every 100 sweeps.
Typical plots of correlation functions for various
beta except in the region of
non-analyticity.Typical error bars are shown.
Correlation functions for the two states in the
region of non-analyticity.

Correlation functions for the two states in the
region of non-analyticity for N=36,B/N=0.52.
History of internal energy for N=24,P/N=O.5.
Points are block averages over every 500

sweeps.Typical errors are 0.02,
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Fig. 10: History of internal energy for
N=36,F/N=0.52.Points are block averages over every

500 sweeps.Typical errors are 0.02.
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